Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Braz J Microbiol ; 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38652443

RESUMO

Probiotic-containing foods are among the most appreciated functional foods; however, probiotic-based dairy products cannot be consumed by people who are lactose intolerant, allergic to milk, or vegetarian or vegan individuals. Thus, new non-dairy matrices have been tested for probiotics delivery. This study evaluated the growth and viability of Limosilactobacillus fermentum ATCC 23271 and Lacticaseibacillus rhamnosus ATCC 9595 in Pitanga juice (Eugenia uniflora L.). The effects of the fermentation on the antioxidant and anti-infective properties of the juice were also analyzed. The E. uniflora juice allowed lactobacilli growth without supplementation, reaching rates around 8.4 Log CFU/mL and producing organic acids (pH values < 4) after 72 h of fermentation. The strain remained viable after 35 days of refrigerated storage. Fermentation by these bacteria increases the antioxidant capacity of the juice. The central composite rotational design was employed to evaluate the effects of bacterial inoculum and pulp concentration on growth and organic acids production by L. fermentum ATCC 23271. The strain was viable and produced organic acids in all tested combinations. L. fermentum-fermented juice and its cell-free supernatant significantly increased the survival of Tenebrio molitor larvae infected by enteroaggregative Escherichia coli 042. The results obtained in this study provide more insights into the potential of Pitanga juice to develop a functional non-dairy probiotic beverage with antioxidant and anti-infective properties.

2.
Curr Med Chem ; 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38584539

RESUMO

The COVID-19 pandemic significantly impacted the global populace, resulting in a staggering number of deaths across the globe. New approaches and biomarkers to evaluate disease progression are crucial for improving disease management. In this context, serum proteomics has emerged as a promising tool for identifying molecular alterations related to COVID-19. This work carried out a bibliometric evaluation of the current status and trends of studies applying serum proteomics to COVID-19 subjects. The search was performed using Web of Science and Scopus databases, and the results were analyzed in VOSviewer software. The investigation was limited to articles published between January 2020 and February 2023. The analysis found 48 articles, primarily experimental studies. China is the most influential country in this field, followed by the USA. The co-occurrence analysis performed by VOSviewer showed 170 keywords, of which 9 reached the occurrence threshold and were divided into two groups. The most cited words were related to biomarker identification and the use of proteomics for diagnosing and treating COVID-19. The most cited proteins include those classically associated with the immune system (IgG, IgM, interleukins, CXCL, CCL, MCP, CRP) and SAA1, SAA1, ApoA-1, TTR (prealbumin), SerpinA and ITIH4. Other studies have validated the predictive value of these serum markers and have the potential to improve the management of COVID-19 patients. The findings highlighted in this bibliometric study can help the researchers design new projects to enhance our understanding of the complex interplay between SARS-CoV-2 and host immunity.

3.
Mol Biol Rep ; 51(1): 375, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38427097

RESUMO

BACKGROUND: Chikungunya virus (CHIKV) is an arbovirus from the Togaviridae family which has four genotypes: West African (WA), East/Central/South African (ECSA) and Asian/Caribbean lineage (AL) and Indian Ocean Lineage (IOL). The ECSA genotype was first registered in Brazil in Feira de Santana and spread to all Brazilian regions. This study reports the characterization of CHIKV isolates recovered from sera samples of fifty patients from seventeen cities in Maranhão, a state from Brazilian northeast region and part of the Legal Amazon area. METHODS AND RESULTS: Primers were developed to amplify the partial regions coding structural proteins (E1, E3, E2, 6 K, and Capsid C). The consensus sequences have 2871 bp, covering approximately 24% of the genome. The isolates were highly similar (> 99%) to the ECSA isolate from Feira de Santana (BHI3734/H804698), presenting 30 non-synonymous mutations in E1 (5.95%), 18 in E2 (4.46%), and 1 in E3 (3.03%), taking the BHI3734/H804698 isolate as standard. Although the mutations described have not previously been related to increased infectivity or transmissibility of CHIKV, in silico analysis showed changes in physicochemical characteristics, antigenicity, and B cell epitopes of E1 and E2. CONCLUSIONS: These findings demonstrate the importance of molecular approaches for monitoring the viral adaptations undergone by CHIKV and its geographic distribution.


Assuntos
Febre de Chikungunya , Vírus Chikungunya , Humanos , Vírus Chikungunya/genética , Febre de Chikungunya/epidemiologia , Brasil , Surtos de Doenças , Filogenia , Genótipo
4.
J Clin Med ; 12(14)2023 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-37510958

RESUMO

This descriptive prospective study investigated the clinical features and treatment adherence of individuals who started the treatment for Pulmonary tuberculosis (TB) during the COVID-19 pandemic in São Luís. Thirty-six TB patients and thirty-five age/sex-matched individuals were recruited between January 2021 and January 2022. The clinical features, sociodemographic information, and serum were obtained at the diagnosis time. Adherence to treatment and adverse reactions were investigated monthly. The most common symptoms in TB patients were cough (91.6%) and fever (83.3%). All TB patients had elevated pre-therapy levels of CRP and reduced HDL: 88.9% presented hypocalcemia and 47.2% showed elevated ALP and GGT. TB patients showed higher levels of ALT, AST, ALP, GGT, CRP, amylase, and triglycerides than the comparison group (p < 0.05), while the calcium levels were reduced (p < 0.0001). TB patients with anti-SARS-CoV-2-IgG antibodies (seroprevalence of 66.7%) presented higher values of amylase and lower CRP levels (p < 0.05). Most patients (~70%) reported at least one adverse drug reaction, mainly pruritus and nausea. The treatment abandonment rate was 19.2%. In conclusion, TB patients showed elevated pre-therapy levels of CRP, low levels of HDL, and hypocalcemia. Liver and pancreatic functions were also compromised in several patients before the therapy. The treatment non-adherence rate observed was similar to other studies performed before the pandemic period.

5.
Pharmaceuticals (Basel) ; 16(3)2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36986568

RESUMO

This study aimed to develop a hydroxyethyl cellulose-based topical formulation containing probiotics and to evaluate its antimicrobial action using in vivo and ex vivo models. Initially, the antagonistic effects of Lacticaseibacillus rhamnosus ATCC 10863, Limosilactobacillus fermentum ATCC 23271, Lactiplantibacillus plantarum ATCC 8014 and Lactiplantibacillus plantarum LP-G18-A11 were analyzed against Enterococcus faecalis ATCC 29212, Klebsiella pneumoniae ATCC 700603, Staphylococcus aureus ATCC 27853 and Pseudomonas aeruginosa ATCC 2785. The best action was seen for L. plantarum LP-G18-A11, which presented high inhibition against S. aureus and P. aeruginosa. Then, lactobacilli strains were incorporated into hydroxyethyl cellulose-based gels (natrosol); however, only the LP-G18-A11-incorporated gels (5% and 3%) showed antimicrobial effects. The LP-G18-A11 gel (5%) maintained its antimicrobial effects and viability up to 14 and 90 days at 25 °C and 4 °C, respectively. In the ex vivo assay using porcine skin, the LP-G18-A11 gel (5%) significantly reduced the skin loads of S. aureus and P. aeruginosa after 24 h, while only P. aeruginosa was reduced after 72 h. Moreover, the LP-G18-A11 gel (5%) showed stability in the preliminary and accelerated assays. Taken together, the results show the antimicrobial potential of L. plantarum LP-G18-A11, which may be applied in the development of new dressings for the treatment of infected wounds.

6.
Molecules ; 28(3)2023 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-36770872

RESUMO

Cinnamaldehyde (CNM) is an essential-oil component with reported anti-infective, anti-inflammatory, and healing effects, making it an interesting compound for the treatment of wound infection. Herein, we evaluated the effects of topical administration of CNM in experimental wounds infected by Staphylococcus aureus. Swiss mice (n = 12/group) were randomly allocated into three groups (CON: animals with uninfected lesions; Sa: animals with untreated infected lesions; Sa + CNM: animals with infected wounds and treated with CNM). Excisional lesions (64 mm2) were induced at the dorsal area followed by the addition of S. aureus (80 µL of a 1.5 × 108 CFU/mL bacterial suspension). The wounds were treated with CNM (200 µg/wound/day) or vehicle (2% DMSO) for 10 days. Skin samples were taken on the 3rd or 10th treatment day for quantification of inflammatory mediators, bacterial load, immunophenotyping, and histological analysis. The treatment with CNM improved the healing process and attenuated the severity of skin lesions infected by S. aureus. These effects were associated with significant decreases in bacterial loads in CNM-treated wounds. The levels of neutrophils, TNF-α, IL-6, NO, and VEGF were decreased in the lesions treated with CNM. Taken together, these data provide further evidence of the effectiveness of CNM for the treatment of skin infections.


Assuntos
Infecções Estafilocócicas , Infecção dos Ferimentos , Camundongos , Animais , Staphylococcus aureus , Cicatrização , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/patologia , Infecção dos Ferimentos/tratamento farmacológico
7.
Nutrients ; 15(4)2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-36839417

RESUMO

Endotoxemia is a condition caused by increasing levels of lipopolysaccharide (LPS) characterized by an impaired systemic response that causes multiple organ dysfunction. Lacticaseibacillus rhamnosus ATCC 9595 is a strain with probiotic potential which shows immunomodulatory properties. The incorporation of this bacterium in food rich in bioactive compounds, such as cupuaçu juice (Theobroma grandiflorum), could result in a product with interesting health properties. This work evaluated the effects of the oral administration of cupuaçu juice fermented with L. rhamnosus on the outcome of LPS-induced endotoxemia in mice. C57BL/6 mice (12/group) received oral doses (100 µL) of saline solution and unfermented or fermented cupuaçu juice (108 CFU/mL). After 5 days, the endotoxemia was induced by an intraperitoneal injection of LPS (10 mg/kg). The endotoxemia severity was evaluated daily using a score based on grooming behavior, mobility, presence of piloerection, and weeping eyes. After 6 h and 120 h, the mice (6/group) were euthanized for analysis of cell counts (in peritoneal lavage and serum) and organ weight. L. rhamnosus grew in cupuaçu juice and produced organic acids without the need for supplementation. The bacteria counts were stable in the juice during storage at 4 °C for 28 days. The fermentation with L. rhamnosus ATCC 9595 changed the metabolites profile of cupuaçu juice due to the biotransformation and enhancement of some compounds. In general, the administration of L. rhamnosus-fermented juice allowed a significant improvement in several characteristics of endotoxemic status (weight loss, hypothermia, severity index, cell migration). In addition, treatment with fermented juice significantly reduced the weight of the spleen, liver, intestine, and kidneys compared to the saline-treated endotoxemic group. Taken together, our data show that short-term intake therapy of cupuaçu juice fermented with L. rhamnosus ATCC 9595 can reduce systemic inflammation in an experimental model of LPS-induced endotoxemia in mice.


Assuntos
Cacau , Endotoxemia , Lacticaseibacillus rhamnosus , Probióticos , Animais , Camundongos , Lipopolissacarídeos/metabolismo , Lacticaseibacillus , Camundongos Endogâmicos C57BL , Probióticos/farmacologia , Fermentação
8.
Curr Med Chem ; 30(31): 3506-3526, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36200147

RESUMO

Cinnamaldehyde (CNM) is a cyclic terpene alcohol found as the major compound of essential oils from some plants of the genus Cinnamomum (Lauraceae). CNM has several reported pharmacological activities, including antimicrobial, antivirulence, antioxidant, and immunomodulatory effects. These properties make CNM an attractive lead molecule for the development of anti-infective agents. In this descriptive review, we discuss the application of CNM in experimental models of microbial infection using invertebrate and vertebrate organisms. CNM (pure or in formulations) has been successfully applied in the treatment of infections caused by a range of bacterial (such as Cronobacter sakazakii, Escherichia coli, Listeria monocytogenes, Mycobacterium tuberculosis, Pseudomonas aeruginosa, Salmonella enterica, Staphylococcus aureus, Streptococcus agalactiae, Vibrio cholerae) and fungal (such as Aspergillus fumigatus, Candida albicans and Cryptococcus neoformans) pathogens. All these experimental evidence-based findings have promoted the use of cinnamaldehyde as the leading molecule for developing new anti- infective drugs.


Assuntos
Anti-Infecciosos , Óleos Voláteis , Humanos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Anti-Infecciosos/farmacologia , Escherichia coli , Testes de Sensibilidade Microbiana , Modelos Teóricos , Terpenos/farmacologia
9.
Pharmaceuticals (Basel) ; 15(11)2022 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-36422571

RESUMO

Staphylococcus aureus is commonly found in wound infections where this pathogen impairs skin repair. The lectin isolated from leaves of Schinus terebinthifolius (named SteLL) has antimicrobial and antivirulence action against S. aureus. This study evaluated the effects of topical administration of SteLL on mice wounds infected by S. aureus. Seventy-two C57/BL6 mice (6−8 weeks old) were allocated into four groups: (i) uninfected wounds; (ii) infected wounds, (iii) infected wounds treated with 32 µg/mL SteLL solution; (iv) infected wounds treated with 64 µg/mL SteLL solution. The excisional wounds (64 mm2) were induced on the dorsum and infected by S. aureus 432170 (4.0 × 106 CFU/wound). The daily treatment started 1-day post-infection (dpi). The topical application of both SteLL concentrations significantly accelerated the healing of S. aureus-infected wounds until the 7th dpi, when compared to untreated infected lesions (reductions of 1.95−4.55-fold and 1.79−2.90-fold for SteLL at 32 µg/mL and 64 µg/mL, respectively). The SteLL-based treatment also amended the severity of wound infection and reduced the bacterial load (12-fold to 72-fold for 32 µg/mL, and 14-fold to 282-fold for 64 µg/mL). SteLL-treated wounds show higher collagen deposition and restoration of skin structure than other groups. The bacterial load and the levels of inflammatory markers (IL-6, MCP-1, TNF-α, and VEGF) were also reduced by both SteLL concentrations. These results corroborate the reported anti-infective properties of SteLL, making this lectin a lead candidate for developing alternative agents for the treatment of S. aureus-infected skin lesions.

10.
Front Pharmacol ; 13: 999131, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36313341

RESUMO

Eugenia brejoensis Mazine (Myrtaceae) is source of an essential oil (EbEO) with anti-infective activities against Staphylococcus aureus. This study evaluated the antimicrobial and anti-inflammatory potentials of EbEO in S. aureus-infected skin wounds. The excisional lesions (64 mm2) were induced on Swiss mice back (6 to 8-week-old) that were allocated into 3 groups (n = 12): 1) non-infected wounds (CON); 2) wounds infected with S. aureus ATCC 6538 (Sa); 3) S. aureus-infected wounds and treated with EbEO (Sa + EbEO). The infected groups received approximately 104 CFU/wound. The animals were treated with EbEO (10 µg/wound/day) or vehicle from the 1-day post-infection (dpi) until the 10th dpi. The clinical parameters (wound area, presence of exudate, edema intensity, etc.) were daily analyzed. The levels of inflammatory mediators (cytokines, nitric oxide, VEGF) and bacterial load were measured at the cutaneous tissue at 4th dpi and 10th dpi. Topical application of EbEO accelerated wound contraction with an average contraction of 83.48 ± 11.27 % of the lesion area until 6th dpi. In this period, the rates of lesion contraction were 54.28 ± 5.57% and 34.5 ± 2.67% for CON and Sa groups, respectively. The positive effects of EbEO on wound contraction were associated with significantly (p < 0.05) reduction on bacterial load and the release of inflammatory mediators (IL-6, IL-17A, TNF-α, NO and VEGF). Taken together, these data confirm the antimicrobial potential of EbEO and provide insights into its anti-inflammatory effects, making this essential oil an interesting candidate for the development of new therapeutic alternatives for infected cutaneous wounds.

11.
Biomedicines ; 10(4)2022 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-35453567

RESUMO

Tuberculous granuloma formation is mediated by hypoxia-inducible factor 1 alpha (HIF-1α), and is essential for establishing latent tuberculosis infection (LTBI) and its progression to active tuberculosis (TB). Here, we investigated whether HIF-1α expression and adjacent mechanisms were associated with latent or active TB infection. Patients with active TB, individuals with LTBI, and healthy controls were recruited, and the expression of cytokine genes IL15, IL18, TNFA, IL6, HIF1A, and A20 in peripheral blood mononuclear cells (PBMCs) and serum vitamin D (25(OH)D3) levels were evaluated. Additionally, nuclear factor kappa B (NF-κB) and tumor necrosis factor-alpha (TNF-α) levels were analyzed in PBMC lysates and culture supernatants, respectively, after HIF-1α blockade with 2-methoxyestradiol. We observed that IL-15 expression was higher in individuals with LTBI than in patients with active TB, while IL-18 and TNF-α expression was similar between LTBI and TB groups. Additionally, serum 25(OH)D3 levels and expression of IL-6, HIF1A, and A20 were higher in patients with active TB than in individuals with LTBI. Moreover, PBMCs from individuals with LTBI showed decreased NF-κB phosphorylation and increased TNF-α production after HIF-1α blockade. Together, these results suggest that under hypoxic conditions, TNF-α production and NF-κB pathway downregulation are associated with the LTBI phenotype.

12.
Foods ; 11(6)2022 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-35327217

RESUMO

Sapodilla (Achras zapota L.) is a fruit with a great nutritional potential; however, its perishable nature is a great obstacle for commercialization/exportation. Herein, osmotic dehydration was applied to sapodilla to reduce post-harvest losses and obtain a stable product with acceptable sensorial characteristics. Initially, a 2³ full-factorial design was performed to determine the effect of temperature (30−50 °C), sucrose concentration (40−60% °Brix) and immersion time (90−240 min) on the moisture loss (ML), solid gain (SG) and dehydration efficiency index (DEI). The samples with higher DEI values were subjected to sensory analysis, followed by physicochemical, microbiological and structural analyses. The temperature and the concentration of the osmotic solution had significant influence (p < 0.05) on ML and SG, whereas DEI was significantly influenced (p < 0.05) by the concentration of osmotic solution and the immersion time. The sample produced by osmotic dehydration using the optimized conditions (40 °C, 50 °Brix; 165 min) obtained higher scores on the sensorial attributes, greater compliance with microbiological standards and generated turgor reduction and ruptures of sapodilla cell walls.

13.
Microorganisms ; 9(4)2021 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-33918745

RESUMO

Pseudomonas aeruginosa has caused high rates of mortality due to the appearance of strains with multidrug resistance (MDR) profiles. This study aimed to characterize the molecular profile of virulence and resistance genes in 99 isolates of P. aeruginosa recovered from different clinical specimens. The isolates were identified by the automated method Vitek2, and the antibiotic susceptibility profile was determined using different classes of antimicrobials. The genomic DNA was extracted and amplified by multiplex polymerase chain reaction (mPCR) to detect different virulence and antimicrobial resistance genes. Molecular typing was performed using the enterobacterial repetitive intergenic consensus (ERIC-PCR) technique to determine the clonal relationship among P. aeruginosa isolates. The drug susceptibility profiles of P. aeruginosa for all strains showed high levels of drug resistance, particularly, 27 (27.3%) isolates that exhibited extensively drug-resistant (XDR) profiles, and the other isolates showed MDR profiles. We detected the polymyxin E (mcr-1) gene in one strain that showed resistance against colistin. The genes that confer resistance to oxacillin (blaOXA-23 and blaOXA-51) were present in three isolates. One of these isolates carried both genes. As far as we know from the literature, this is the first report of the presence of blaOXA-23 and blaOXA-51 genes in P. aeruginosa.

14.
Foods ; 10(3)2021 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-33809284

RESUMO

Fruit juices have been emerging as excellent vehicles for development of probiotic products due to their nutritional properties and presence of bioactive compounds. This work evaluated the growth and viability of Limosilactobacillus fermentum ATCC 23271 and Lacticaseibacillus rhamnosus ATCC 9595 in bacuri juice (Platonia insignis Mart., Clusiaceae). Both strains were able to grow in bacuri juice, without any supplementation. Viability was kept after 28 days of storage; however, growth was significantly higher for L. rhamnosus ATCC 9595 (7.40 ± 0.04 Log CFU/mL). Following this, the effects of bacterial inoculum and pulp concentration on growth and lactic acid production by L. rhamnosus ATCC 9595 were investigated using a central composite rotational design. The inoculum concentration was the main factor for obtaining the most favorable relation between growth and organic acid production (G/pH ratio). Among the tested conditions, those used in assay 6 allowed the best G/pH ratio (2.13) and higher lactic acid production (4.14 g/L). In these conditions, L. rhamnosus ATCC 9595 grown in bacuri juice showed the same resistance towards acidification or addition of lysozyme than when cultivated in MRS. Finally, the anti-infective effects of fermented and non-fermented juices were analyzed using Tenebrio molitor larvae infected by enteroaggregative Escherichia coli 042. The pre-treatment with supernatants of both fermented and non-fermented juices significantly increased the survival of E. coli-infected larvae. However, only the L. rhamnosus-fermented juice had protective effects when inoculated 2 h after infection. Collectively, the results obtained in this research allowed the basis for the development of a non-dairy probiotic product from bacuri juice.

15.
Biomolecules ; 11(2)2021 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-33670478

RESUMO

Escherichia coli is responsible for cases of diarrhea around the world, and some studies have shown the benefits of cinnamaldehyde in the treatment of bacterial disease. Therefore, the objective of this study was to evaluate the effects of cinnamaldehyde in mice colonized by pathogenic E. coli, as well as to provide more insights into its antimicrobial action mechanism. After determination of minimum inhibitory (MIC) and minimum bactericidal (MBC) concentrations, the interference of cinnamaldehyde in macromolecular pathways (synthesis of DNA, RNA, protein, and cell wall) was measured by incorporation of radioisotopes. The anti-adhesive properties of cinnamaldehyde towards E. coli 042 were evaluated using human epithelial type 2 (HEp-2) cells. Intestinal colonization was tested on mice, and the effect of cinnamaldehyde on Tenebrio molitor larvae. Cinnamaldehyde showed MIC and MBC values of 780 µg/mL and 1560 µg/mL, respectively; reduced the adhesion of E. coli 042 on HEp-2 cells; and affected all the synthetic pathways evaluated, suggesting that compost impairs the membrane/cell wall structure leading bacteria to total collapse. No effect on the expression of genes related to the SOS pathway (sulA and dinB1) was observed. The compound did not interfere with cell viability and was not toxic against T. molitor larvae. In addition, cinnamaldehyde-treated mice exhibited lower levels of colonization by E. coli 042 than the untreated group. Therefore, the results show that cinnamaldehyde is effective in treating the pathogenic E. coli strain 042 and confirm it as a promising lead molecule for the development of antimicrobial agents.


Assuntos
Acroleína/análogos & derivados , Escherichia coli/efeitos dos fármacos , Acroleína/farmacologia , Animais , Antibacterianos/farmacologia , Produtos Biológicos/farmacologia , Humanos , Intestinos/microbiologia , Camundongos , Testes de Sensibilidade Microbiana , Tenebrio/microbiologia
16.
Pathogens ; 10(2)2021 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-33540588

RESUMO

The skin is the largest organ in the human body, acting as a physical and immunological barrier against pathogenic microorganisms. The cutaneous lesions constitute a gateway for microbial contamination that can lead to chronic wounds and other invasive infections. Chronic wounds are considered as serious public health problems due the related social, psychological and economic consequences. The group of bacteria known as ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa and Enterobacter sp.) are among the most prevalent bacteria in cutaneous infections. These pathogens have a high level of incidence in hospital environments and several strains present phenotypes of multidrug resistance. In this review, we discuss some important aspects of skin immunology and the involvement of ESKAPE in wound infections. First, we introduce some fundamental aspects of skin physiology and immunology related to cutaneous infections. Following this, the major virulence factors involved in colonization and tissue damage are highlighted, as well as the most frequently detected antimicrobial resistance genes. ESKAPE pathogens express several virulence determinants that overcome the skin's physical and immunological barriers, enabling them to cause severe wound infections. The high ability these bacteria to acquire resistance is alarming, particularly in the hospital settings where immunocompromised individuals are exposed to these pathogens. Knowledge about the virulence and resistance markers of these species is important in order to develop new strategies to detect and treat their associated infections.

17.
Glycobiology ; 31(4): 358-371, 2021 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-33094324

RESUMO

The emergence of a new human coronavirus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has imposed great pressure on the health system worldwide. The presence of glycoproteins on the viral envelope opens a wide range of possibilities for the application of lectins to address some urgent problems involved in this pandemic. In this work, we discuss the potential contributions of lectins from nonmammalian sources in the development of several fields associated with viral infections, most notably COVID-19. We review the literature on the use of nonmammalian lectins as a therapeutic approach against members of the Coronaviridae family, including recent advances in strategies of protein engineering to improve their efficacy. The applications of lectins as adjuvants for antiviral vaccines are also discussed. Finally, we present some emerging strategies employing lectins for the development of biosensors, microarrays, immunoassays and tools for purification of viruses from whole blood. Altogether, the data compiled in this review highlight the importance of structural studies aiming to improve our knowledge about the basis of glycan recognition by lectins and its repercussions in several fields, providing potential solutions for complex aspects that are emerging from different health challenges.


Assuntos
Antivirais/farmacologia , Tratamento Farmacológico da COVID-19 , Metabolismo dos Carboidratos/efeitos dos fármacos , Lectinas/metabolismo , Polissacarídeos/metabolismo , SARS-CoV-2/efeitos dos fármacos , COVID-19/virologia , Humanos
18.
Adv Pharmacol Pharm Sci ; 2020: 1258707, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32399519

RESUMO

This work evaluated the antioxidant properties and in vivo antinociceptive and anti-inflammatory effects of extracts obtained from fruit peels of Myrciaria floribunda (H. West ex Willd.) O. Berg (Myrtaceae). This plant is popularly known in Brazil as Cambuí or camboim. Different extracts were submitted to comparative analysis to determine the content of selected phytochemical classes (levels of total phenols, flavonoids, and monomeric anthocyanins) and the in vitro antioxidant potentials. The extract with higher potential was selected for in vivo evaluation of its antinociceptive and anti-inflammatory action. Finally, the chemical characterization of this extract was performed by high-performance liquid chromatography (HPLC). MfAE (extract obtained using acetone as solvent) showed the higher levels of phenols (296 mg GAE/g) and anthocyanins contents (35.65 mg Cy-3-glcE/g) that were associated with higher antioxidant activity. MfAE also exhibited in vivo anti-inflammatory and analgesic propertiers. This fraction inhibited the inflammatory and neurogenic phases of pain, and this effect was reversed by naloxone (suggesting the involvement of opioidergic system). MfAE reduced the abdominal contortions induced by acetic acid. The HPLC analysis revealed the presence of gallic acid (and its derivatives) and ellagic acid. Taken together, these data support the use of M. floribunda fruit peels for development of functional foods and nutraceutics.

19.
Pharmaceuticals (Basel) ; 13(3)2020 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-32188166

RESUMO

The relevance of oxidative stress in the pathogenesis of several diseases (including inflammatory disorders) has traditionally led to the search for new sources of antioxidant compounds. In this work, we report the selection of fractions with high antioxidant action from B. tetraphylla (BT) leaf extracts. In vitro methods (DPPH and ABTS assays; determination of phenolic and flavonoid contents) were used to select products derived from B. tetraphylla with high antioxidant action. Then, the samples with the highest potentials were evaluated in a model of injury based on the inoculation of a lethal dose of heat-inactivated Escherichia coli in Tenebrio molitor larvae. Due to its higher antioxidant properties, the methanolic extract (BTME) was chosen to be fractionated using Sephadex LH-20 column-based chromatography. Two fractions from BTME (BTFC and BTFD) were the most active fractions. Pre-treatment with these fractions protected larvae of T. molitor from the stress induced by inoculation of heat-inactivated E. coli. Similarly, BTFC and BTFD increased the lifespan of larvae infected with a lethal dose of enteroaggregative E. coli 042. NMR data indicated the presence of aliphatic compounds (terpenes, fatty acids, carbohydrates) and aromatic compounds (phenolic compounds). These findings suggested that products derived from B. tetraphylla leaves are promising candidates for the development of antioxidant and anti-infective agents able to treat oxidative-related dysfunctions.

20.
Sci Rep ; 9(1): 18159, 2019 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-31796807

RESUMO

Staphylococcus aureus is recognized as an important pathogen causing a wide spectrum of diseases. Here we examined the antimicrobial effects of the lectin isolated from leaves of Schinus terebinthifolia Raddi (SteLL) against S. aureus using in vitro assays and an infection model based on Galleria mellonella larvae. The actions of SteLL on mice macrophages and S. aureus-infected macrophages were also evaluated. SteLL at 16 µg/mL (8 × MIC) increased cell mass and DNA content of S. aureus in relation to untreated bacteria, suggesting that SteLL impairs cell division. Unlike ciprofloxacin, SteLL did not induce the expression of recA, crucial for DNA repair through SOS response. The antimicrobial action of SteLL was partially inhibited by 50 mM N-acetylglucosamine. SteLL reduced staphyloxathin production and increased ciprofloxacin activity towards S. aureus. This lectin also improved the survival of G. mellonella larvae infected with S. aureus. Furthermore, SteLL induced the release of cytokines (IL-6, IL-10, IL-17A, and TNF-α), nitric oxide and superoxide anion by macrophagens. The lectin improved the bactericidal action of macrophages towards S. aureus; while the expression of IL-17A and IFN-γ was downregulated in infected macrophages. These evidences suggest SteLL as important lead molecule in the development of anti-infective agents against S. aureus.


Assuntos
Anacardiaceae/química , Anti-Infecciosos/farmacologia , Lectinas/farmacologia , Macrófagos/microbiologia , Folhas de Planta/química , Infecções Estafilocócicas/tratamento farmacológico , Staphylococcus aureus/efeitos dos fármacos , Animais , Ciprofloxacina/farmacologia , Citocinas/metabolismo , Feminino , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Óxido Nítrico/metabolismo , Infecções Estafilocócicas/metabolismo , Superóxidos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...